Beams Division Preparation for Run IIb

Dave McGinnis June 11, 2001

Run II Luminosity Goals

- The luminosity goal for Run IIa is 2 fb⁻¹
 - ☐ Peak luminosity up to 2x10³² cm⁻²sec⁻¹
 - ☐ Switch to 103 bunches at 1x10³² cm⁻²sec⁻¹
 - ☐ Length of Run IIa is about 2 years
- The luminosity goal for Run IIa+Run IIb is 15 fb⁻¹
 - ☐ Increase antiproton intensity by 2-3
 - □ Peak luminosity up to 5x10³² cm⁻²sec⁻¹
 - □ 103 bunch operation
 - ☐ Length of Run IIb is about 4 years

Run II Parameters

					TRANSPORTER TO A
RUN	Ib (1993-95)	Run IIa	Run IIa	Run IIb	
	(6x6)	(36x36)	(140x105)	(140x105)	
Protons/bunch	$2.3x10^{11}$	$2.7x10^{11}$	$2.7x10^{11}$	$2.7x10^{11}$	
Antiprotons/bunch*	5.5×10^{10}	$3.0x10^{10}$	$4.0x10^{10}$	$1.0x10^{11}$	
Total Antiprotons	$3.3x10^{11}$	$1.1 \text{x} 10^{12}$	$4.2x10^{12}$	1.1×10^{13}	
Pbar Production Rate	6.0×10^{10}	$1.0x10^{11}$	2.1×10^{11}	$5.2x10^{11}$	hr ⁻¹
Proton emittance	23π	20π	20π	20π	mm-mrad
Antiproton emittance	13π	15π	15π	15π	mm-mrad
β*	35	35	35	35	cm
Energy	900	1000	1000	1000	GeV
Antiproton Bunches	6	36	103	103	
Bunch length (rms)	0.60	0.37	0.37	0.37	m
Crossing Angle	0	0	136	136	µrad
Typical Luminosity	0.16×10^{31}	0.86×10^{32}	2.1×10^{32}	5.2×10^{32}	cm ⁻² sec ⁻¹
Integrated Luminosity [†]	3.2	17.3	42	105	pb ⁻¹ /week
Bunch Spacing	~3500	396	132	132	nsec
Interactions/crossing	2.5	2.3	1.9	4.8	

[†]The typical luminosity at the beginning of a store has traditionally translated to integrated luminosity with a 33% duty factor. Operation with antiproton recycling may be somewhat different.

Luminosity vs. Antiproton Intensity

The Run IIb Plan

To obtain 15 fb⁻¹ by 2007 we need to:

Increase the number of antiprotons in the collider by a factor of 2-3 over Run IIa

- without major interruption to Run IIa
- within a period of 2-3 years
- with a budget of about \$35 M

More Antiprotons

- More protons on the antiproton target (~1.8 x)
 - ☐ Slip stacking
 - ➤ MI Beam loading compensation
 - ➤ Booster Cogging
 - ➤ Proton beam sweeping
 - ☐ Brighter Proton Source
 - ➤ Brighter Ion Source
 - ➤ New Linac front-end acceleration stage

Slip Stacking

M:IBEAM=beam current (dc)
M:RFSUML=rf voltage fanback
M:BLM53=beam current at 53 MHz

More Antiprotons

- Better antiproton collection efficiency
 - \square Lithium lens Upgrade(~1.5 x)
 - ➤ Solid lens redesign
 - ➤ Liquid Lithium lens
 - \square AP2-Debuncher aperture increases (~1.5 x)
 - ➤ Physical aperture increases and beam based alignment
 - ➤ Debuncher lattice Upgrades

Lithium Lens

Handling the Increased Antiproton Flux

- Better cooling
 - ☐ Debuncher cooling bandwidth increase
 - ☐ Accumulator Stacktail
 - ➤ Gain slope redesign
 - **➤** Betatron Cooling
 - ☐ Accumulator Core bandwidth and sensitivity increase
 - ☐ Electron cooling in the Recycler
- Better Antiproton Transfer Efficiency
 - ☐ Dedicated Accumulator to Recycler 8 GeV transfer line (AP5)

Accumulator Stacktail Stochastic Cooling System

$$\Phi_0 = \frac{|\eta|}{4} \frac{W^2}{f_0} \frac{E_d}{pc} \frac{1}{\ln(f_{max}/f_{min})}$$

Recycler Electron Cooling

TEVATRON Electron Lens

Run 2b Organizational Goals for CY2001

- Design Report Rough Draft for Accelerator Advisory Committee (AAC) meeting (May 21-22, 2001)
 - ☐ Description of overall Run 2b plan.
 - ☐ Only the scope of each Run 2b project is included.
 - ☐ Posted on the WEB at http://cosmo.fnal.gov/run2b/Documents/
- Design Report finished by October 1, 2001
 - ☐ Will include the scope, resource requirements, and schedule for each Run 2b project.
- Dedicated Run 2b project review by the AAC in December of 2001
- Regular (weekly) project meetings

Slip Stacking

- ☐ Testing of DSP algorithms in low level RF has begun
- ☐ Low intensity beam trials to start before May shutdown
- ☐ Simulations of slip-stacking without beam loading replicated
- ☐ Simulations of slip-stacking with beam loading underway.

Beam loading

- ☐ RF feedback at fundamental operational
- ☐ Prototype RF feedback at m=1 lines to be tested summer 2001
- ☐ IIR design awaiting results of simulations of slip-stacking with beam loading.

AP5 line
☐ Reverse proton tuneup for shot setup at about 1/2 hour
☐ Redesign of 8 GeV AP3-AP1 lattice almost complete.
☐ Power supply reconfiguration of 8 Gev AP3-AP1 and 120 GeV AP1 to take place during July 2001 shutdown
☐ Transfer function measurements of 8 Gev P1-AP3 beam lines to begin
May 2001.
AP2 & Debuncher Aperture Upgrades
☐ Optics redesign has been started
☐ Transfer function measurements during May 2001 shutdown
☐ BPM system design with CDF (Ohio State) has begun
☐ Final installment of Debuncher Injection region improvements finished during May 2001 shutdown

Solid Lens R&D

- □ ANSYS mechanical and magnetic model of present lens nearly complete.
- ☐ Initial MARS tracking results using ANSYS output as input have been completed (CDF- Bussey)
- ☐ Fatigue tests of diffusion bonding underway.
- 8 cm diffusion bonded mechanical design underway. Fabrication to begin in Fall 2001
- □ No-beam Target Sweeping tests to begin Summer 2001

Accumulator Cooling

■ Not started

- Recycler Electron Cooling
 - ☐ High voltage testing of Pelletron complete
 - ☐ Electron beam re-circulation tests started.
 - Successful re-circulation through U-band accomplished!
 - □ Construction of long beam-line mock-up well underway.
 - ☐ Preliminary civil construction design for MI-30 has been started.
- Debuncher Lattice Upgrades
 - □ Definition of beam studies just starting.
- Linac Ion Source
 - Not started

- TEV Tune shift compensation
 - ☐ Prototype system installed in TEVATRON
 - ☐ Tune shift of bunches observed
 - ☐ Future plans are awaiting outcome of TEV tests.
- Booster ramped correctors
 - ☐ Single sector linear electronics tested.
 - ☐ Power supply limitations require global software control.
- Booster cogging
 - ☐ First prototype successfully tested but caused large radial position excursions
 - ☐ Second prototype is built and lab tests are nearly complete. Beam tests will start before summer.

- TEV. Long dampers
 - ☐ Design of 36 x 36 digital under-sampled system has begun
- TEV Beam loading
 - Not started
- Liquid Lens R&D
 - ☐ Just finished second Fermilab review of BINP project.
 - □ 3rd lens prototype under construction with new titanium alloy.
 - ☐ Fermilab will receive liquid lithium magnetic pumping system this summer.
 - ☐ Fermilab will receive power supply this fall.

Project Schedule

(WPAS version)

Total Cost for Run IIb

(WPAS version)

Total Cost

Total Cost

			Total			
	FY01	FY02	FY03	FY04	FY05	Total
PS	249	367	389	231	0	1235
MI	77	693	0	0	0	770
RR	2384	5637	5960	600	0	14580
Pbar	329	673	1128	5824	5987	13940
TEV	1000	1110	555	648	463	3775
Total	4038	8479	8032	7302	6449	34300

Run IIb Luminosity Schedule

Initial Store Luminosity

Integrated Luminosity

Initial Luminosity & Resources Spent

Conclusions

- Run IIB Accelerator plan defined
- Project Team being put in place
- Considerable technical progress
- Thorough technical review planed for the fall of 2001
- Goal is to achieve more than 15 fb⁻¹ of integrated luminosity by 2007

M & S Cost for Run IIb

(WPAS version)

M & S

M & S

			M&S			
	FY01	FY02	FY03	FY04	FY05	Total
PS	43	67	73	38	0	220
MI	20	180	0	0	0	200
RR	1050	3500	4000	250	0	8800
Pbar	145	285	510	2890	2985	6815
TEV	500	600	300	350	250	2000
Total	1758	4632	4883	3528	3235	18035

Labor Cost for Run IIb

(WPAS version)

Total Labor

			Labor			
	FY01	FY02	FY03	FY04	FY05	Total
PS	2.1	3.0	3.2	1.9	0.0	10.2
MI	0.6	5.1	0.0	0.0	0.0	5.7
RR	13.3	21.4	19.6	3.5	0.0	57.8
Pbar	1.8	3.9	6.2	29.3	30.0	71.3
TEV	5.0	5.1	2.6	3.0	2.1	17.8
Total	22.8	38.5	31.5	37.7	32.1	162.7

Total Labor

			Labor\$			
	FY01	FY02	FY03	FY04	FY05	Total
PS	206	300	316	194	0	1015
MI	57	513	0	0	0	570
RR	1334	2137	1960	350	0	5780
Pbar	184	388	618	2934	3002	7125
TEV	500	510	255	298	213	1775
Total	2280	3847	3149	3775	3214	16265

Project Schedule

(WPAS version)

Project Schedule

(WPAS version)

Project Schedule (WPAS version)

	Υ						Ш		Υ					Ш				Y				Ш		Ш		Υ					Ш	Ш		Υ		Ш			Ш	
	1								2									3								4								5						
	10	۱D	JF	= M	A١	ΛJ	J	٩S	0	NC) J	F۱	ΛA	М	J	JA	S	O١	۱D	J	FM	ΙΑΙ	М	J J	AS	30	N	D J	F	ИΑ	М	J	AS	0	ND	J	FM.	ΑM	1 J	JAS
Accumulator																																								
StackTail Betatron Cooling														П								П		П																
Core Tranverse Cooling				Τ			П	Т			Т			П	T			T			Τ	П	T	П	Т	Γ	П													
StackTail Pickups				Т	П		П				Т			П							Т	П		П			П													
Beam Lines																	į																							
Beam Position System																																								
AP2 line																	į																							
Aperture																																								
Left Bends																																								
Correctors																																								
Chromatic Correction																								Ш																
AP1 Line							Ш				L			Ш								Ш		Ш			Ш				Ш	Ш				Ш				
EPB dipole replacements							Ш				L			Ш								Ш		Ш			Ш				Ш	Ш				Ш				
F17 Cmagnet Replacements																																				Ш				
TEV																																								
Beam-Beam Tune Shift Comp																																								
Beam Loading Compensation																						Ш		Ш																
Longitudinal Dampers			Ш																																					